碳化硅(SiC)緣何成為第三代半導體最重要的材料?一文為你揭秘

2020-10-31 12:40:27 來源:

 

一、碳化硅的前世今生

  碳化硅由于化學性能穩定、導熱系數高、熱膨脹系數小、耐磨性能好,除作磨料用外,還有很多其他用途,例如:以特殊工藝把碳化硅粉末涂布于水輪機葉輪或汽缸體的內壁,可提高其耐磨性而延長使用壽命12倍;用以制成的高級耐火材料,耐熱震、體積小、重量輕而強度高,節能效果好。低品級碳化硅(含SiC85%)是極好的脫氧劑,用它可加快煉鋼速度,并便于控制化學成分,提高鋼的質量。此外,碳化硅還大量用于制作電熱元件硅碳棒。

  碳化硅的硬度很大,莫氏硬度為9.5級,僅次于世界上最硬的金剛石(10級),具有優良的導熱性能,是一種半導體,高溫時能抗氧化。

  碳化硅歷程表

  1905年第一次在隕石中發現碳化硅

  1907年第一只碳化硅晶體發光二極管誕生

  1955年理論和技術上重大突破,LELY提出生長高品質碳化概念,從此將SiC作為重要的電子材料

  1958年在波士頓召開第一次世界碳化硅會議進行學術交流

  1978年六、七十年代碳化硅主要由前蘇聯進行研究。到1978年首次采用“LELY改進技術的晶粒提純生長方法

  1987年~至今以CREE的研究成果建立碳化硅生產線,供應商開始提供商品化的碳化硅基。

  2001年德國Infineon公司推出SiC二極管產品,美國Cree和意法半導體等廠商也緊隨其后推出了SiC二極管產品。在日本,羅姆、新日本無線及瑞薩電子等投產了SiC二極管。

  2013929日,碳化硅半導體國際學會“ICSCRM2013”召開,24個國家的半導體企業、科研院校等136家單位與會,人數達到794人次,為歷年來之最。國際知名的半導體器件廠商,如科銳、三菱、羅姆、英飛凌、飛兆等在會議上均展示出了最新量產化的碳化硅器件。

  到現在已經有很多廠商生產碳化硅器件比如Cree公司、Microsemi公司、Infineon公司、Rohm公司。

  二、碳化硅器件的優勢特性

  碳化硅(SiC)是目前發展最成熟的寬禁帶半導體材料,世界各國對SiC的研究非常重視,紛紛投入大量的人力物力積極發展,美國、歐洲、日本等不僅從國家層面上制定了相應的研究規劃,而且一些國際電子業巨頭也都投入巨資發展碳化硅半導體器件。

  與普通硅相比,采用碳化硅的元器件有如下特性:

  1、高壓特性

  碳化硅器件是同等硅器件耐壓的10

  碳化硅肖特基管耐壓可達2400V。

  碳化硅場效應管耐壓可達數萬伏,且通態電阻并不很大。

  2、高頻特性

  3、高溫特性

  在Si材料已經接近理論性能極限的今天,SiC功率器件因其高耐壓、低損耗、高效率等特性,一直被視為理想器件而備受期待。然而,相對于以往的Si材質器件,SiC功率器件在性能與成本間的平衡以及其對高工藝的需求,將成為SiC功率器件能否真正普及的關鍵。

  目前,低功耗的碳化硅器件已經從實驗室進入了實用器件生產階段。目前碳化硅圓片的價格還較高,其缺陷也多。

  三、最受關注的碳化硅MOS SiC器件分類

  1、SiC-MOSFET SiC-MOSFET是碳化硅電力電子器件研究中最受關注的器件。成果比較突出的就是美國的Cree公司和日本的ROHM公司。

  碳化硅MOS的結構

  碳化硅MOSFETSiCMOSFETN+源區和P井摻雜都是采用離子注入的方式,在1700℃溫度中進行退火激活。另一個關鍵的工藝是碳化硅MOS柵氧化物的形成。由于碳化硅材料中同時有SiC兩種原子存在,需要非常特殊的柵介質生長方法。其溝槽星結構的優勢如下:

  平面vs溝槽

  SiC-MOSFET采用溝槽結構可最大限度地發揮SiC的特性

  碳化硅MOS的優勢

  硅IGBT在一般情況下只能工作在20kHz以下的頻率。由于受到材料的限制,高壓高頻的硅器件無法實現。碳化硅MOSFET不僅適合于從600V10kV的廣泛電壓范圍,同時具備單極型器件的卓越開關性能。相比于硅IGBT,碳化硅MOSFET在開關電路中不存在電流拖尾的情況具有更低的開關損耗和更高的工作頻率。

  20kHz的碳化硅MOSFET模塊的損耗可以比3kHz的硅IGBT模塊低一半,50A的碳化硅模塊就可以替換150A的硅模塊。顯示了碳化硅MOSFET在工作頻率和效率上的巨大優勢。

  碳化硅MOSFET寄生體二極管具有極小的反向恢復時間trr和反向恢復電荷Qrr。如圖所示,同一額定電流900V的器件,碳化硅MOSFET寄生二極管反向電荷只有同等電壓規格硅基MOSFET5%。對于橋式電路來說(特別當LLC變換器工作在高于諧振頻率的時候),這個指標非常關鍵,它可以減小死區時間以及體二極管的反向恢復帶來的損耗和噪音,便于提高開關工作頻率。

  碳化硅MOS管的應用

  碳化硅MOSFET模塊在光伏、風電、電動汽車及軌道交通等中高功率電力系統應用上具有巨大的優勢。碳化硅器件的高壓高頻和高效率的優勢,可以突破現有電動汽車電機設計上因器件性能而受到的限制,這是目前國內外電動汽車電機領域研發的重點。如電裝和豐田合作開發的混合電動汽車(HEV)、純電動汽車(EV)內功率控制單元(PCU),使用碳化硅MOSFET模塊,體積比減小到1/5。三菱開發的EV馬達驅動系統,使用SiCMOSFET模塊,功率驅動模塊集成到了電機內,實現了一體化和小型化目標。預計在2018-2020年碳化硅MOSFET模塊將廣泛應用在國內外的電動汽車上。

  四、碳化硅肖特二極管

  1、碳化硅肖特基二極管結構

  碳化硅肖特基二極管(SiCSBD)的器件采用了結勢壘肖特基二極管結構(JBS),可以有效降低反向漏電流,具備更好的耐高壓能力。

  2、碳化硅肖特基二極管優勢

  碳化硅肖特基二極管是一種單極型器件,因此相比于傳統的硅快恢復二極管(SiFRD),碳化硅肖特基二極管具有理想的反向恢復特性。在器件從正向導通向反向阻斷轉換時,幾乎沒有反向恢復電流(如圖1.2a),反向恢復時間小于20ns,甚至600V10A的碳化硅肖特基二極管的反向恢復時間在10ns以內。因此碳化硅肖特基二極管可以工作在更高的頻率,在相同頻率下具有更高的效率。另一個重要的特點是碳化硅肖特基二極管具有正的溫度系數,隨著溫度的上升電阻也逐漸上升,這與硅FRD正好相反。這使得碳化硅肖特基二極管非常適合并聯實用,增加了系統的安全性和可靠性。

  概括碳化硅肖特基二極管的主要優勢,有如下特點:

  1.幾乎無開關損耗

  2.更高的開關頻率

  3.更高的效率

  4.更高的工作溫度

  5.正的溫度系數,適合于并聯工作

  6.開關特性幾乎與溫度無關

  碳化硅肖特基二極管的應用

  碳化硅肖特基二極管可廣泛應用于開關電源、功率因素校正(PFC)電路、不間斷電源(UPS)、光伏逆變器等中高功率領域,可顯著的減少電路的損耗,提高電路的工作頻率。在PFC電路中用碳化硅SBD取代原來的硅FRD,可使電路工作在300kHz以上,效率基本保持不變,而相比下使用硅FRD的電路在100kHz以上的效率急劇下降。隨著工作頻率的提高,電感等無源原件的體積相應下降,整個電路板的體積下降30%以上。

  五、人們是如何評價碳化硅的?

  幾乎凡能讀到的文章都是這樣介紹碳化硅:

  碳化硅的能帶間隔為硅的2.8(寬禁帶),達到3.09電子伏特。其絕緣擊穿場強為硅的5.3,高達3.2MV/cm.其導熱率是硅的3.3,49w/cm.k。由碳化硅制成的肖特基二極管及MOS場效應晶體管,與相同耐壓的硅器件相比,其漂移電阻區的厚度薄了一個數量級。其雜質濃度可為硅的2個數量級。由此,碳化硅器件的單位面積的阻抗僅為硅器件的100分之一。它的漂移電阻幾乎就等于器件的全部電阻。因而碳化硅器件的發熱量極低。這有助于減少傳導和開關損耗,工作頻率一般也要比硅器件高10倍以上。此外,碳化硅半導體還有的固有的強抗輻射能力。

  近年利用碳化硅材料制作的IGBT(絕緣柵雙極晶體管)等功率器件,已可采用少子注入等工藝,使其通態阻抗減為通常硅器件的十分之一。再加上碳化硅器件本身發熱量小,因而碳化硅器件的導熱性能極優。還有,碳化硅功率器件可在400℃的高溫下正常工作。其可利用體積微小的器件控制很大的電流。工作電壓也高得多。

  六、目前碳化硅器件發展情況如何?

  1、技術參數:舉例來說,肖特基二極管電壓由250伏提高到1000伏以上,芯片面積小了,但電流只有幾十安。工作溫度提高到180℃,離介紹能達600℃相差很遠。壓降更不盡人意,與硅材料沒有差別,高的正向壓降要達到2V。

 2、市場價格:約為硅材料制造的56倍。

  七、碳化硅(SiC)器件發展中的難題在哪里?

  綜合各種報道,難題不在芯片的原理設計,特別是芯片結構設計解決好并不難。難在實現芯片結構的制作工藝。

  舉例如下:

  1、碳化硅晶片的微管缺陷密度。 微管是一種肉眼都可以看得見的宏觀缺陷,在碳化硅晶體生長技術發展到能徹底消除微管缺陷之前,大功率電力電子器件就難以用碳化硅來制造。盡管優質晶片的微管密度已達到不超過15cm-2的水平。但器件制造要求直徑超過100mm的碳化硅晶體,微管密度低于0.5cm-2。

  2、外延工藝效率低。 碳化硅的氣相同質外延一般要在1500℃以上的高溫下進行。由于有升華的問題,溫度不能太高,一般不能超過1800℃,因而生長速率較低。液相外延溫度較低、速率較高,但產量較低。

  3、摻雜工藝有特殊要求。 如用擴散方法進行慘雜,碳化硅擴散溫度遠高于硅,此時掩蔽用的SiO2層已失去了掩蔽作用,而且碳化硅本身在這樣的高溫下也不穩定,因此不宜采用擴散法摻雜,而要用離子注入摻雜。如果p型離子注入的雜質使用鋁。由于鋁原子比碳原子大得多,注入對晶格的損傷和雜質處于未激活狀態的情況都比較嚴重,往往要在相當高的襯底溫度下進行,并在更高的溫度下退火。這樣就帶來了晶片表面碳化硅分解、硅原子升華的問題。目前,p型離子注入的問題還比較多,從雜質選擇到退火溫度的一系列工藝參數都還需要優化。

  4、歐姆接觸的制作。 歐姆接觸是器件電極引出十分重要的一項工藝。在碳化硅晶片上制造金屬電極,要求接觸電阻低于10-5Ωcm2,電極材料用NiAl可以達到,但在100℃以上時熱穩定性較差。采用Al/Ni/W/Au復合電極可以把熱穩定性提高到600℃、100h,不過其接觸比電阻高達10-3Ωcm2。所以要形成好的碳化硅的歐姆接觸比較難。

  5、配套材料的耐溫。 碳化硅芯片可在600℃溫度下工作,但與其配套的材料就不見得能耐此高溫。例如,電極材料、焊料、外殼、絕緣材料等都限制了工作溫度的提高。

  以上僅舉數例,不是全部。還有很多工藝問題還沒有理想的解決辦法,如碳化硅半導體表面挖槽工藝、終端鈍化工藝、柵氧層的界面態對碳化硅MOSFET器件的長期穩定性影響方面,行業中還有沒有達成一致的結論等,大大阻礙了碳化硅功率器件的快速發展。

  八、為什么SIC器件還不能普及?

  早在20世紀60年代,碳化硅器件的優點已經為人們所熟知。之所以目前尚未推廣普及,是因為存在著許多包括制造在內的許多技術問題。直到現在SIC材料的工業應用主要是作為磨料(金剛砂)使用。

  SIC在能夠控制的壓力范圍內不會融化,而是在約2500℃的升華點上直接轉變為氣態。所以SIC單晶的生長只能從氣相開始,這個過程比SIC的生長要復雜的多,SI在大約1400℃左右就會熔化。使SIC技術不能取得商業成功的主要障礙是缺少一種合適的用于工業化生產功率半導體器件的襯底材料。對SI的情況,單晶襯底經常指硅片(wafer,它是從事生產的前提和保證。一種生長大面積SIC襯底的方法以在20世紀70年代末研制成功。但是用改進的稱為Lely方法生長的襯底被一種微管缺陷所困擾。

  只要一根微管穿過高壓PN結就會破壞PN結阻斷電壓的能力,在過去三年中,這種缺陷密度已從每平方毫米幾萬根降到幾十根。除了這種改進外,當器件的最大尺寸被限制在幾個平方毫米時,生產成品率可能在大于百分之幾,這樣每個器件的最大額定電流為幾個安培。因此在SIC功率器件取得商業化成功之前需要對SIC的襯底材料作更大技術改進。

  SIC工業生產的晶片和最佳晶片的微管密度的進展

  制造不同器件成品率為40%90%的微管密度值

  上圖看出,現在SIC材料,光電子器件已滿足要求,已經不受材料質量影響,器件的工業生產成品率,可靠性等性能也符合要求。高頻器件主要包括MOSFETSCHOTTKY二極管內的單極器件。SIC材料的微管缺陷密度基本達到要求,僅對成品率還有一定影響。高壓大功率器件用SIC材料大約還要二年的時間,進一步改善材料缺陷密度?傊徽摤F在存在什么困難,半導體如何發展,SIC無疑是新世紀一種充滿希望的材料。

  史上最全第三代半導體產業發展介紹(附世界各國研究概況解析)

  第3代半導體是指以氮化鎵(GaN)、碳化硅(SiC)、金剛石、氧化鋅(ZnO)為代表的寬禁帶半導體材料,各類半導體材料的帶隙能比較見表1。與傳統的第1代、第2代半導體材料硅(Si)和砷化鎵(GaAs)相比,第3代半導體具有禁帶寬度大、擊穿電場高、熱導率大、電子飽和漂移速度高、介電常數小等獨特的性能,使其在光電器件、電力電子、射頻微波器件、激光器和探測器件等方面展現出巨大的潛力,是世界各國半導體研究領域的熱點。

 九、主要應用領域的發展概況

  目前,第3代半導體材料正在引起清潔能源和新一代電子信息技術的革命,無論是照明、家用電器、消費電子設備、新能源汽車、智能電網、還是軍工用品,都對這種高性能的半導體材料有著極大的需求。根據第3代半導體的發展情況,其主要應用為半導體照明、電力電子器件、激光器和探測器、以及其他4個領域,每個領域產業成熟度各不相同(見圖)。

  第3代半導體各應用領域示意圖

  第三代半導體材料

  1、碳化硅單晶材料

  在寬禁帶半導體材料領域就技術成熟度而言,碳化硅是這族材料中最高的,是寬禁帶半導體的核心。SiC材料是IV-IV族半導體化合物,具有寬禁帶(Eg3.2eV)、高擊穿電場(4×106V/cm)、高熱導率(4.9W/cm.k)等特點。從結構上講,SiC材料屬硅碳原子對密排結構,既可以看成硅原子密排,碳原子占其四面體空位;又可看成碳原子密排,硅占碳的四面體空位。對于碳化硅密排結構,由單向密排方式的不同產生各種不同的晶型,業已發現約200種。目前最常見應用最廣泛的是4H6H晶型。4H-SiC特別適用于微電子領域,用于制備高頻、高溫、大功率器件;6H-SiC特別適用于光電子領域,實現全彩顯示。

  隨著SiC技術的發展,其電子器件和電路將為系統解決上述挑戰奠定堅實基礎。因此SiC材料的發展將直接影響寬禁帶技術的發展。

  SiC器件和電路具有超強的性能和廣闊的應用前景,因此一直受業界高度重視,基本形成了美國、歐洲、日本三足鼎立的局面。目前,國際上實現碳化硅單晶拋光片商品化的公司主要有美國的Cree公司、Bandgap公司、DowDcorning公司、II-VI公司、Instrinsic公司;日本的Nippon公司、Sixon公司;芬蘭的Okmetic公司;德國的SiCrystal公司,等。其中Cree公司和SiCrystal公司的市場占有率超過85%。在所有的碳化硅制備廠商中以美國Cree公司最強,其碳化硅單晶材料的技術水平可代表了國際水平,專家預測在未來的幾年里Cree公司還將在碳化硅襯底市場上獨占鰲頭。

  2、氮化鎵材料

  GaN材料是1928年由Johason等人合成的一種Ⅲ-Ⅴ族化合物半導體材料,在大氣壓力下,GaN晶體一般呈六方纖鋅礦結構,它在一個元胞中有4個原子,原子體積大約為GaAs1/2;其化學性質穩定,常溫下不溶于水、酸和堿,而在熱的堿溶液中以非常緩慢的速度溶解;在HClH2下高溫中呈現不穩定特性,而在N2下最為穩定。GaN材料具有良好的電學特性,寬帶隙(3.39eV)、高擊穿電壓(3×106V/cm)、高電子遷移率(室溫1000cm2/V·s)、高異質結面電荷密度(1×1013cm-2)等,因而被認為是研究短波長光電子器件以及高溫高頻大功率器件的最優選材料,相對于硅、砷化鎵、鍺甚至碳化硅器件,GaN器件可以在更高頻率、更高功率、更高溫度的情況下工作。另外,氮化鎵器件可以在1~110GHz范圍的高頻波段應用,這覆蓋了移動通信、無線網絡、點到點和點到多點微波通信、雷達應用等波段。

  近年來,以GaN為代表的族氮化物因在光電子領域和微波器件方面的應用前景而受到廣泛的關注。作為一種具有獨特光電屬性的半導體材料,GaN的應用可以分為兩個部分:憑借GaN半導體材料在高溫高頻、大功率工作條件下的出色性能可取代部分硅和其它化合物半導體材料;憑借GaN半導體材料寬禁帶、激發藍光的獨特性質開發新的光電應用產品。目前GaN光電器件和電子器件在光學存儲、激光打印、高亮度LED以及無線基站等應用領域具有明顯的競爭優勢,其中高亮度LED、藍光激光器和功率晶體管是當前器件制造領域最為感興趣和關注的。

  國外在氮化鎵體單晶材料研究方面起步較早,現在美國、日本和歐洲在氮化鎵體單晶材料研究方面都取得了一定的成果,都出現了可以生產氮化鎵體單晶材料的公司,其中以美國、日本的研究水平最高。

  美國有很多大學、研究機構和公司都開展了氮化鎵體單晶制備技術的研究,一直處于領先地位,先后有TDI、Kyma、ATMI、Cree、CPI等公司成功生產出氮化鎵單晶襯底。Kyma公司現在已經可以出售1英寸、2英寸、3英寸氮化鎵單晶襯底,且已研制出4英寸氮化鎵單晶襯底。

  日本在氮化鎵襯底方面研究水平也很高,其中住友電工(SEI)和日立電線(HitachiCable)已經開始批量生產氮化鎵襯底,日亞(Nichia)、Matsushita、索尼(Sony)、東芝(Toshiba)等也開展了相關研究。日立電線的氮化鎵襯底,直徑達2英寸,襯底上位錯密度都達到1×106cm-2水平。

  歐洲氮化鎵體單晶的研究主要有波蘭的Top-GaN和法國的Lumilog兩家公司。TopGaN生產GaN材料采用HVPE工藝,位錯密度1×107cm-2,厚度0.12mm,面積大于400mm2。綜上,國外的氮化鎵體單晶襯底研究已經取得了很大進展,部分公司已經實現了氮化鎵體單晶襯底的商品化,技術趨于成熟,下一步的發展方向是大尺寸、高完整性、低缺陷密度、自支撐襯底材料。

  3、氮化鋁材料

  AlN材料是族氮化物,具有0.73.4eV的直接帶隙,可以廣泛應用于光電子領域。與砷化鎵等材料相比,覆蓋的光譜帶寬更大,尤其適合從深紫外到藍光方面的應用,同時族氮化物具有化學穩定性好、熱傳導性能優良、擊穿電壓高、介電常數低等優點,使得族氮化物器件相對于硅、砷化鎵、鍺甚至碳化硅器件,可以在更高頻率、更高功率、更高溫度和惡劣環境下工作,是最具發展前景的一類半導體材料。

  AlN材料具有寬禁帶(6.2eV),高熱導率(3.3W/cm·K),且與AlGaN層晶格匹配、熱膨脹系數匹配都更好,所以AlN是制作先進高功率發光器件(LED,LD)、紫外探測器以及高功率高頻電子器件的理想襯底材料。

  近年來,GaN基藍、綠光LED、LD、紫外探測器以及大功率高頻HEMT器件都有了很大發展。在AlGaNHEMT器件方面,AlNGaN材料相比有著更高的熱導率,而且更容易實現半絕緣;與SiC相比,則晶格失配更小,可以大大降低器件結構中的缺陷密度,有效提高器件性能。AlN是生長族氮化物外延層及器件結構的理想襯底,其優點包括:與GaN有很小的晶格失配和熱膨脹系數失配;化學性質相容;晶體結構相同,不出現層錯層;同樣有極化表面;由于有很高的穩定性并且沒有其它元素存在,很少會有因襯底造成的沾污。AlN材料能夠改善器件性能,提高器件檔次,是電子器件發展的源動力和基石。

  目前國外在AlN單晶材料發展方面,以美國、日本的發展水平為最高。美國的TDI公司是目前完全掌握HVPE法制備AlN基片技術,并實現產業化的唯一單位。TDIAlN基片是在〈0001〉的SiC或藍寶石襯底上淀積1030μm的電絕緣AlN層。主要用作低缺陷電絕緣襯底,用于制作高功率的AlGaNHEMT。目前已經有2、

  3、4、6英寸產品。日本的AlN技術研究單位主要有東京農工大學、三重大學、NGK公司、名城大學等,已經取得了一定成果,但還沒有成熟的產品出現。另外俄羅斯的約菲所、瑞典的林雪平大學在HVPE法生長AlN方面也有一定的研究水平,俄羅斯NitrideCrystal公司也已經研制出直徑達到15mmPVTAlN單晶樣品。在國內,AlN方面的研究較國外明顯滯后,一些科研單位在AlNMOCVD外延生長方面,也有了初步的探索,但都沒有明顯的突破及成果。

  4、金剛石

  金剛石是碳結晶為立方晶體結構的一種材料。在這種結構中,每個碳原子以“強有力”的剛性化學鍵與相鄰的4個碳原子相連并組成一個四面體。金剛石晶體中,碳原子半徑小,因而其單位體積鍵能很大,使它比其他材料硬度都高,是已知材料中硬度最高(維氏硬度可達10400kg/mm2)。

  另外,金剛石材料還具有禁帶寬度大(5.5eV);熱導率高,最高達120W/cm·K(-190℃),一般可達20W/cm.K(20℃);傳聲速度最高,介電常數小,介電強度高等特點。金剛石集力學、電學、熱學、聲學、光學、耐蝕等優異性能于一身,是目前最有發展前途的半導體材料。依據金剛石優良的特性,應用十分廣泛,除傳統的用于工具材料外,還可用于微電子、光電子、聲學、傳感等電子器件領域。

  5、氧化鋅

  氧化鋅(ZnO)是Ⅱ-Ⅵ族纖鋅礦結構的半導體材料,禁帶寬度為3.37eV;另外,其激子束縛能(60meV)GaN(24meV)、ZnS(39meV)等材料高很多,如此高的激子束縛能使它在室溫下穩定,不易被激發(室溫下熱離化能為26meV),降低了室溫下的激射閾值,提高了ZnO材料的激發效率;谶@些特點,ZnO材料既是一種寬禁帶半導體,又是一種具有優異光電性能和壓電性能的多功能晶體。

  它既適合制作高效率藍色、紫外發光和探測器等光電器件,還可用于制造氣敏器件、表面聲波器件、透明大功率電子器件、發光顯示和太陽能電池的窗口材料以及變阻器、壓電轉換器等。相對于GaN,ZnO制造LED、LD更具優勢,具預計,ZnOLEDLD的亮度將是GaNLEDLD10倍,而價格和能耗則只有后者的1/10。

  ZnO材料以其優越的特性被廣泛應用,受到各國極大關注。

  日、美、韓等發達國家已投入巨資支持ZnO材料的研究與發展,掀起世界ZnO研究熱潮。據報道,日本已生長出直徑達2英寸的高質量ZnO單晶;我國有采用CVT法已生長出了直徑32mm和直徑45mm、4mm厚的ZnO單晶。材料技術的進步同時引導和推進器件技術的進步,日本研制出基于ZnO同質PN結的電致發光LED;我國也成功制備出國際首個同質ZnOLED原型器件,實現了室溫下電注入發光。器件制備技術的進步,推動ZnO半導體材料實用化進程,由于其獨特的優勢,在國防建設和國民經濟上將有很重要的應用,前景無限。

  十、結語

寬禁帶半導體材料作為一類新型材料,具有獨特的電、光、聲等特性,其制備的器件具有優異的性能,在眾多方面具有廣闊的應用前景。它能夠提高功率器件工作溫度極限,使其在更惡劣的環境下工作;能夠提高器件的功率和效率,提高裝備性能;能夠拓寬發光光譜,實現全彩顯示。隨著寬禁帶技術的進步,材料工藝與器件工藝的逐步成熟,其重要性將逐漸顯現,在高端領域將逐步取代第一代、第二代半導體材料,成為電子信息產業的主宰。

來源:楚江新材官微

相關信息

分會介紹

最新信息

政策法規

行業知識

日本午夜福利片在线观看